Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 256: 121609, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38615601

RESUMO

Lingering inconsistencies in the global methane (CH4) budget and ambiguity in CH4 sources and sinks triggered efforts to identify new CH4 formation pathways in natural ecosystems. Herein, we reported a novel mechanism of light-induced generation of hydroxyl radicals (•OH) that drove the production of CH4 from aquatic dissolved organic matters (DOMs) under ambient conditions. A total of five DOM samples with different origins were applied to examine their potential in photo-methanification production under aerobic conditions, presenting a wide range of CH4 production rates from 3.57 × 10-3 to 5.90 × 10-2 nmol CH4 mg-C-1 h-1. Experiments of •OH generator and scavenger indicated that the contribution of •OH to photo-methanificaiton among different DOM samples reached about 4∼42 %. In addition, Fourier transform infrared spectroscopy and Fourier transform ion cyclotron resonance mass spectrometry showed that the carbohydrate- and lipid-like substances containing nitrogen-bonded methyl groups, methyl ester, acetyl groups, and ketones, were the potential precursors for light-induced CH4 production. Based on the experimental results and simulated calculations, the contribution of photo-methanification of aquatic DOMs to the diffusive CH4 flux across the water-air interface in a typical eutrophic shallow lake (e.g., Lake Chaohu) ranged from 0.1 % to 18.3 %. This study provides a new perspective on the pathways of CH4 formation in aquatic ecosystems and a deeper understanding on the sources and sinks of global CH4.

2.
Chemosphere ; 354: 141677, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38467198

RESUMO

The bioavailability of contaminants in aquatic environments was highly related with the existing forms (soluble or adsorbed) and properties of dissolved organic matters (DOMs). In this study, the molecular weight (MWs)-dependent effects of DOMs on the adsorption and bioavailability of sulfadiazine were explored. Colloid ZnO and Al2O3 were employed as the representative colloidal particles, and algae-derived organic matter (AOM) and humic acid (HA) were selected as typical autochthonous and allochthonous DOMs. The ultrafiltration procedure was applied to divide the bulk DOMs into high MW (HMW-, 1 kDã0.45 µm) and low MW (LMW-, <1 kDa) fractions. Results showed that HMW-DOM contained more aromatic and protein-like substances as compared to the LMW counterparts. In addition, presence of AOM promoted sulfadiazine adsorption capabilities by 1.19-4.54 folds and mitigated the inhibition ratio by 0.56-0.78 folds, whereas those of HA inhibited sulfadiazine adsorption by 0.27-0.84 folds and enhanced the biotoxicity by 1.21-1.45 folds. Regardless of different DOM types, HMW-fraction exhibited highest effects on sulfadiazine adsorption and bioavailability, followed by the bulk- and LMW-fractions. Two-dimensional correlation spectroscopy showed that sulfadiazine was adsorbed on colloidal surfaces prior to AOM, and the subsequent adsorption of AOM can provide additional sites for sulfadiazine adsorption, which decreased the concentrations of aqueous sulfadiazine as well as the biotoxicity to Microcystis aeruginosa (M. aeruginosa). The HA, however, was preferentially adsorbed on colloidal surfaces, which hindered the subsequent sulfadiazine adsorption and resulted in a high sulfadiazine abundance in aqueous solution as well as the enhanced biotoxicity to M. aeruginosa. This study highlighted the importance of the types and MWs of DOMs in influencing the behaviors and ecological effects of aquatic contaminants.


Assuntos
Matéria Orgânica Dissolvida , Substâncias Húmicas , Peso Molecular , Adsorção , Disponibilidade Biológica , Substâncias Húmicas/análise
3.
Chemosphere ; 335: 139176, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37302494

RESUMO

The structure especially the active site manipulation of Fenton-like catalysts was essential for the efficient removal of organic contaminants in the aquatic environment. In this study, the carbonized bacterial cellulose/FeMn oxide composite (CBC@FeMnOx) were synthetized and modified by hydrogen (H2) reduction to obtain the carbonized bacterial cellulose/FeMn composite (CBC@FeMn), with emphasis on the processes and mechanisms for atrazine (ATZ) attenuation. The results showed that H2 reduction did not change the microscopic morphology of the composites but destroy the Fe-O and Mn-O structures. Compared with the CBC@FeMnOx composite, the H2 reduction could promote the removal efficiency from 62% to 100% for CBC@FeMn, as well as the enhancement of degradation rate from 0.021 min-1 to 0.085 min-1. The quenching experiments and electron paramagnetic resonance (EPR) displayed that the hydroxyl radicals (•OH) was the major contributor for ATZ degradation. The investigation for Fe and Mn species indicated that H2 reduction could increase the content of Fe(II) and Mn(III) in the catalyst, thus improving the generation of •OH and accelerating the cycle process between Fe(III)/Fe(II). Owing to the excellent reusability and stability, it was indicated that the H2 reduction can be considered as an efficient way to regulate the chemical valence of the catalyst, thus enhancing the removal efficiency of aquatic contaminants.


Assuntos
Peróxido de Hidrogênio , Ferro , Ferro/química , Oxirredução , Peróxido de Hidrogênio/química , Óxidos , Catálise , Compostos Ferrosos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...